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Abstract. In this paper, a few models for optical router nodes are considered. The stations
(ports) of such a node try to transmit packets. Successful transmission of a packet of type
j at station i gives a profit γij , but there is also a positive probability that such a packet
is dropped, causing a penalty θij . Consider one fixed cycle (frame), in which each station is
assigned some visit time. The goal is to choose the visit times in such a way that the revenue
is maximized. In our first model there is only one wavelength, and we take the finiteness of
buffers into account. The revenue maximization problem is shown to be separable concave,
thus allowing application of a very efficient algorithm.
In our second model we allow multiple wavelengths. We aim to maximize the revenue by
optimally assigning stations to wavelengths and, for each wavelength, by optimally choosing
the visit times of the allocated stations within the cycle. This gives rise to a mixed integer
linear programming problem (MILP) which is NP-hard. To solve this problem fast and
efficiently we provide a three-step heuristic. It consists of (i) solving a separable concave
optimization problem, then (ii) allocating the stations to wavelengths using a simple bin
packing algorithm, and finally (iii) solving another set of separable concave optimization
problems. We present numerical results to investigate the effectiveness of the heuristic and
the advantages of having multiple wavelengths.

Keywords: optical routing, optical node, finite buffer, multiple wavelengths, rev-
enue, optimization

1 Introduction

In the last decades, optical fibers have emerged as the dominant transport medium in communica-
tion networks, because they offer major advantages over copper cables: huge bandwidth, extremely
low drop probabilities and an extra dimension, viz., a choice of wavelengths (wavelength division
multiplexing). Multiple wavelengths are to be used in order to enable the packet routing at var-
ious planes in the network (each at a specific wavelength). By including wavelength conversion,
packets can be transferred between these planes, and thus congestion points can be circumvented.
To handle packets at the Internet Protocol (IP) layer would imply lots of packet conversions from
optical to electronic, after which the IP processing is done in the electrical domain, followed by a
conversion back to optical. These Optical/Electrical/Optical conversions introduce relatively sig-
nificant time delays. All-optical routing in the nodes, as proposed and studied in this paper, hence
is valuable from the viewpoint of minimizing latency.

Future optical networks will probably need Optical Burst Switching (OBS) or Optical Packet
Switching (OPS). The most used method to deal with contention in such optical networks is a
combined use of wavelength converters and some type of optical buffering. However, the above-
mentioned switching techniques offer substantial challenges, in particular w.r.t. buffering [7]; in
fact, there have been proposals for optical switching without the need for buffering (cf. [11, 13,
15]). Photons cannot be stored easily, and hence buffering of optical packets is more complicated
than buffering in conventional communication systems. When photons need to be buffered, they
are sent into a fiber delay line (FDL), which thus provides a small delay to the photons without



displacing or losing them [8]. Packets can be inserted into and extracted from the FDLs by means
of a cross/bar switch, cf. Fig. 1. If after the completion of such a loop the photon still cannot
be transmitted, then it could again be sent into the FDL, or be considered as dropped. Such
optical nodes are to be used in an all-optical packet-routing network, having multiple hops. See
[10] for a discussion of stochastic modeling of optical buffers, and [14] for recent work on scheduling
algorithms for situations with both optical buffers and wavelength converters.

Fig. 1: Buffering packets in an optical FDL

Fig. 2: Optical node with multiple wavelengths

The fact that photons/packets can be dropped naturally gives rise to an optimization problem.
We allow several packet types because there can be several types of data at each port. We may
subsequently assume that successful transmission of a packet of some type j at station (= port) i
of the router node gives a profit γij , but that there is also a positive probability that such a packet
is dropped, causing a penalty θij . The packet drop probabilities depend on the amount of time a
server (wavelength) is available for transmission of packets from station i. Hence one would like
to determine how much time per cycle (= a predetermined frame time of fixed length) a station
is allowed to transmit packets, using one of the available wavelengths.

In [1] we studied such an optimization problem, for the case of a single wavelength. We modeled
a single-wavelength optical routing node as a queueing system with a single server (the wavelength)
and N stations – the N ports of the routing node. We assumed that each successful transmission
of a packet brings a certain profit. Our aim in [1] was to maximize the router performance by
maximizing that profit. As a communication system typically works in frame time, we demanded
that the time it takes the server to complete one cycle of the N stations is a given constant C. We
then wanted to assign fixed amounts of time V1, . . . , VN to the visit periods (also called service
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windows) of the stations, such that
∑N
i=1 Vi = C −

∑N
i=1 Si, where Si is the time to switch to

station i ∈ {1, 2, . . . , N}. We introduced the probability pi(Vi) that a packet in a retrial loop of
station i (representing an FDL) retries during visit period Vi, and the probability qi(Vi) that a
packet is dropped when it fails to retry during Vi. Under reasonable assumptions on those retry and
drop probabilities, the revenue optimization problem in [1] was shown to be a separable concave
optimization problem – a well-studied type of optimization problem that allows for an efficient
and insightful algorithm (RANK; cf. [6]) that yields the optimal solution. Those assumptions are
that pi(·) are increasing and concave, and qi(·) are decreasing and convex, and that the probability
ri(·) := pi(·) + qi(·) − pi(·)qi(·), that a packet in a retrial loop of station i leaves the system, is
increasing.

The present paper considers a number of variants and extensions of the model of [1]. Firstly,
in Section 2, we add the feature of finite buffers to the model of [1]. Optical buffering is one
of the most severe bottlenecks in optical routing/switching, so considering finite buffers is quite
relevant. Recirculating buffers, such as fiber loops, are inherently finite buffers; there cannot be
more data buffered than the amount of data symbols which fits in the circumference of the fiber
loop. We suggest an approximation for the drop probabilities of packets at the various stations.
This approximation is not only very accurate, but also again gives rise to a separable concave
revenue optimization problem, which can be solved by the RANK algorithm in a straightforward
way.

Secondly, in Section 3, see also [2], we extend the model of [1] to the case ofmultiple wavelengths,
thus doing justice to one of the key features offered by optical networking. Our goals in that section
are (i) to formulate and solve the revenue optimization problem for an optical routing node with
multiple wavelengths, and (ii) to investigate the advantage offered by having multiple wavelengths.
It will turn out that the advantage, in terms of revenues, is very significant (in particular, going
from one to two wavelengths). Solving the revenue optimization problem for multiple wavelengths
is an NP-hard problem, and therefore we develop a heuristic; this heuristic is shown to work very
well. Our numerical results give insight into the sensitivity of various parameters and modeling
assumptions. We restrict ourselves in Section 3 to the case of infinite buffers, because we prefer
to focus on the aspect of multiple wavelengths without also having to add an approximation that
allows us to handle finite buffers.

In Subsection 3.4 we briefly consider a variant of the multiple wavelength model, in which we
now allow a station to be allocated to two adjacent wavelengths instead of assuming that each
station must be allocated to exactly one wavelength.

Thirdly, in Section 4, we reflect upon one essential assumption made in [1, 2] as well as in the
first sections of the present paper, viz., that service times are negligible. Given that the aggregated
line rate in a fiber network is typically amply exceeding the input data rates in the nodes, the
assumption of negligible service times is quite realistic for line loads which are not so high that
the line operates near congestion. Still, we believe it is interesting to extend the approach of [1, 2]
and the present paper to allow for nonnegligible service times. In Section 4 we suggest a simple
approximation for the case of a single wavelength and infinite buffers (the setting of [1]) which
allows one to solve a separable (but not necessarily concave) revenue maximization problem.

Section 5 contains conclusions and suggestions for further research.

2 Finite buffers

In this section we consider a single optical routing node with N stations which have finite buffers.
We present a model description in Subsection 2.1, propose an approximation for the packet drop
probabilities at the various stations in Subsection 2.2, consider the ensuing revenue maximization
problem in Subsection 2.3, and present some numerical results in Subsection 2.4.

2.1 Model description

We model an optical routing node with N ports to route packets, and retrial loops to store packets.
The representation we propose in this section is a single server polling model, i.e., a queueing model
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with a single server which cyclically visits all N queues. Customers, i.e., packets, arrive at queues
1, . . . , N according to independent Poisson processes with rates λ1, . . . , λN . The server visits queue
i for a fixed time Vi, i = 1, . . . , N , regardless of the numbers of customers present at the queues.
After a visit to queue i, it switches to queue i + 1 mod N , which requires a switchover time
Si+1 mod N . A cycle along all N queues hence takes

C := S1 + V1 + · · ·+ SN + VN .

Such a fixed cycle time corresponds to the fixed frame time in which these communication systems
often operate.

The dynamics at queue i, i = 1, . . . , N , are as follows. If a type-i packet arrives during a visit
period Vi, then it is served instantaneously, with zero service time (see Section 4 for a relaxation
of the latter assumption). Otherwise, the packet is placed in a buffer which can hold Bi < ∞
packets. If the buffer is full upon arrival of a packet, that packet is dropped (lost). Finally, when
the server returns to queue i, all packets in the buffer independently retry (which here amounts
to instantaneously receiving service) with probability pi(Vi), which we for now allow to depend on
Vi, and stay in the buffer till the next visit to queue i with probability 1− pi(Vi).

We assume that each successful transmission (service) at queue i yields a profit γi, whereas
each dropped packet at queue i results in a penalty/cost θi. Of course one could capture profits
and costs in one parameter, but we prefer to make the profits and penalties separately visible.

Let qi(Vi) denote the probability that an arbitrary packet arriving at queue i is dropped,
i = 1, . . . , N . The net mean revenue per time unit at queue i then is given by

Ri(Vi) = γiλi(1− qi(Vi))− θiλiqi(Vi), i = 1, . . . , N. (2.1)

Our goal is to maximize the net total mean revenue per time unit,

R(V1, . . . , VN ) :=

N∑
i=1

Ri(Vi), (2.2)

by suitably choosing the lengths V1, . . . , VN of the visit periods, under the constraints that all
Vi ≥ 0 and

∑N
i=1 Vi = C −

∑N
i=1 Si. In the next subsection we turn to the determination of those

drop probabilities.

2.2 An approximation for the packet drop probabilities

For a given visit period length Vi, there is no interaction between queue i and the other queues,
and hence the drop probability qi(Vi) only depends on the parameters involving queue i. Therefore
we can determine qi(Vi) by just analysing the queue behavior at queue i. The only feature that
connects the queues is the choice of the Vi, with its constraint

∑N
i=1 Vi = C −

∑N
i=1 Si.

In the remainder of this subsection we omit the subscript i, focussing on some arbitrary queue
with arrival rate λ, visit period V , retry probability p at the start of each visit, and drop probability
q(V ). Obviously,

q(V ) =
C − V
C

π, (2.3)

where
π = P (packet is dropped|arrival in non− serving period). (2.4)

π clearly is the fraction of arrivals in a non-serving period that finds the buffer full. Denoting
the number of packets in the buffer at the start of a non-serving period by X and the number of
arrivals during that non-serving period by A, we have, with (y)+ = max(0, y):

π =
E[(X +A−B)+]

E[A]
. (2.5)
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A is Poisson distributed with mean (C − V )λ. It is also not very difficult to determine E[(X +
A − B)+], by observing the following. Let Xn denote the number of packets at the start of the
nth non-serving period, An the number of arrivals in that period and Yn the number of packets at
the end of that period, n = 1, 2, . . . . Then {Xn, n = 1, 2, . . . } is an irreducible, aperiodic, positive
recurrent Markov chain, which is specified by the recursion (with Bin(n, p) denoting a binomially
distributed random variable with parameters n and p):

Xn = Bin(Yn−1, 1− p), Yn = min(Xn +An, B). (2.6)

It is easy to determine the steady-state distribution P (X = j) for this Markov chain, and thus to
determine π and q(V ). However, for the purpose of performing revenue maximization, we would
like to have a relatively simple explicit formula for q(V ). Below we propose such a formula. In
the next subsection we also show that it has the pleasing property of being convex in V at least
for the case p(V ) ≡ p; that will allow us to use the RANK algorithm in maximizing mean total
revenue as its expression becomes a separable, concave function of V1, . . . , VN .

Starting-point of our approximation is to remove the assumption that B is finite. When B is
infinite, the steady-state number of customers at the start of a visit period, now denoted by X̂ to
indicate that B is no longer assumed to be finite, satisfies the recursion, cf. (2.6),

X̂
d
= Bin(X̂ +A, 1− p(V )). (2.7)

Remember that A is Poisson distributed with mean (C − V )λ. Taking generating functions, or
using Poisson properties regarding summation and thinning, it is easily seen that X̂, too, is Poisson
distributed, with E[X̂] = (C − V )λ 1−p(V )

p(V ) . It should be noted that, when approximating π, cf.
(2.5), we make π too large by replacing X by X̂. We propose to compensate for this by writing

π ≈ C0
E[(X̂ +A−B)+]

E[A]
. (2.8)

Here C0 is a multiplicative constant, which we want to choose such that π is exact for B = 0 (notice
that π is also exact for B =∞, since then π = 0). Obviously, we then need to take C0 = E[A]

E[X̂+A]
,

resulting in

π ≈ E[(X̂ +A−B)+]

E[X̂ +A]
. (2.9)

From (2.3) and (2.9) we obtain the approximation

q(V ) ≈ C − V
C

E[(X̂ +A−B)+]

E[X̂ +A]
. (2.10)

We now provide an expression for E[(X̂+A−B)+]. Introducing Z := X̂+A, with X̂ and A being
independent, it immediately follows that Z is Poisson distributed with mean (C − V ) λ

p(V ) . Now

E[(Z −B)+] =

∞∑
j=B+1

(j −B)P (Z = j)

= −BP (Z > B) +

∞∑
j=B+1

je−(C−V )λ/p(V ) ((C − V )λ/p(V ))j

j!

= −BP (Z > B) + (C − V )
λ

p(V )
P (Z ≥ B). (2.11)

Combining (2.10) and (2.11), and using E[X̂ +A] = (C − V ) λ
p(V ) , gives

q(V ) ≈ C − V
C

P (Z ≥ B)− Bp(V )

λC
P (Z > B). (2.12)
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Sijtsma in his bachelor thesis [12] has tested this approximation for a wide range of B values,
concluding that the approximation is accurate over the whole range, the largest errors occurring
roughly when B equals E[Z]. However, he also points out that a correction is needed when V = 0.
In that case the drop probability should be one since no time is spent at the queue. Hence, as also
suggested by Sijtsma [12], we shall use the approximation (2.12) for q(V ) when V > 0, and take
q(0) = 1.

2.3 Revenue maximization

As indicated at the end of Subsection 2.1, our goal in this section is to choose V1, . . . , VN such
that the net mean revenue is maximized while satisfying some constraints on the Vi, i = 1, . . . , N .
Hence, cf. (2.1) and (2.2), we are faced with the following optimization problem:

Max

N∑
i=1

γiλi(1− qi(Vi))− θiλiqi(Vi), (2.13)

sub

V1, . . . , VN ≥ 0,

N∑
i=1

Vi = C −
N∑
i=1

Si. (2.14)

Since Vi only appears in the Ri(Vi) part of the revenue function, this is a separable optimization
problem. We now show that in the case pi(Vi) ≡ pi it is a separable concave optimization problem;
for this we need to show that Ri(Vi) is a concave function of Vi, and hence that qi(Vi) is convex.
Once we have established this, we have shown that our revenue maximization problem falls in a
class of optimization problems which are solved in a straightforward way by the RANK algorithm,
cf. [6]. Again suppressing the subscript i, and using (2.12), we can write:

dq(V )

dV
= − 1

C
P (Z ≥ B) +

C − V
C

d

dV
P (Z ≥ B)− Bp

λC

d

dV
P (Z > B). (2.15)

The last two terms cancel, as can be seen in the following way: For B = 0, 1, . . . ,

d

dV
P (Z > B) =

∞∑
j=B+1

d

dV
e−(C−V )λ/p ((C − V )λ/p)j

j!

= −λ
p
e−(C−V )λ/p ((C − V )λ/p)B

B!
= −λ

p
P (Z = B). (2.16)

Similarly for d
dV P (Z ≥ B); and finally use that P (Z = B) = (C−V )λ

Bp P (Z = B−1) for B = 1, 2, . . . .
Hence we conclude that the derivative of q(V ) w.r.t. V equals − 1

CP (Z ≥ B), which is negative.
Furthermore, the derivative is increasing in V as long as V is increasing towards C, as follows from
(2.16). This shows that q(V ) is a convex function of V , and hence that R(V ) is concave.

2.4 Numerical results

In this subsection we use the RANK algorithm to present some numerical results for the case
of three queues/stations. Our baseline choice for the parameters is: C = 10, Si = 1/3, λi = 1,
Bi = 10, pi = 1/2, γi = 1 and θi = 1 for i = 1, 2, 3. In the three tables of this subsection we vary
one parameter (successively: λi, pi and Bi), while keeping all other parameters symmetric and as
just specified.

The numerical results for the visit lengths V1, V2, V3 suggest that the fraction of time spent
at a queue i decreases with pi and with Bi, and increases with λi. These results could have been
expected. Indeed, increasing pi would result in i’s buffer emptying more during a visit period Vi.
The buffer then has more space to fill during a non-serving period, so on average it takes longer
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to fill the buffer. Hence the number of dropped packets decreases, so a shorter visit period Vi
suffices. A similar argument holds when Bi is increased: the buffer again has more space to fill,
and a shorter visit period Vi suffices. The reverse is true when increasing λi. Now more packets
arrive at the buffer, and the time to fill it up decreases. Hence more packets are dropped, so a
longer visit period Vi is required to reduce the number of dropped packets.

Table 1: Results for varying λi
λ1 λ2 λ3 V1 V2 V3

∑3
i=1Ri(Vi)

1 1 1 2.997 2.997 2.997 1.731
1 1 0.9 3.564 3.564 1.872 1.769
1 0.9 0.8 4.315 3.212 1.468 1.825
1 0.8 0.7 4.948 2.922 1.125 1.873
1 0.8 0.6 5.346 3.628 0.026 1.919
1 0.8 0.5 5.357 3.643 0.000 1.576
1 0.1 0.1 8.982 0.000 0.000 1.000

Table 2: Results for varying pi
p1 p2 p3 V1 V2 V3

∑3
i=1Ri(Vi)

0.5 0.5 0.5 2.997 2.997 2.997 1.731
0.5 0.5 0.625 3.538 3.538 1.924 1.928
0.5 0.625 0.75 4.401 3.001 1.600 2.255
0.5 0.625 0.875 4.750 3.437 0.813 2.385

0.375 0.625 0.875 5.801 3.001 0.202 2.255
0.25 0.625 0.875 6.858 2.142 0.000 1.473
0.1 0.999 1.000 8.999 0.000 0.000 0.975

Table 3: Results for varying Bi
B1 B2 B3 V1 V2 V3

∑3
i=1Ri(Vi)

10 10 10 2.997 2.997 2.997 1.731
10 10 12 3.388 3.388 2.228 1.901
10 12 14 4.096 2.997 1.907 2.203
10 14 16 2.731 2.652 1.617 2.453
8 14 16 5.795 2.283 1.222 2.337
4 14 18 7.339 1.661 0.000 1.506
4 25 35 8.962 0.000 0.000 0.991

3 Multiple wavelengths

In this section we consider an optical routing node with N stations, under the assumption that
multiple wavelengths are available. We present a model description in Subsection 3.1, consider the
revenue maximization problem in Subsection 3.2, present some numerical results in Subsection 3.3,
and briefly discuss a variant in which stations may be allocated to two adjacent wavelengths in
Subsection 3.4.
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3.1 Model description

Consider a K-wavelength optical routing node with N stations (ports) to route packets and with
fiber delay lines (retrial buffers) to store packets, cf. Fig 2. We represent it by a queueing model
with K servers which visit N queues. We shall assume that there is a fixed assignment of stations
to servers, in which each station is assigned to only one server (how to do that assignment is part
of our optimization problem).
The packets: Packets of type j, j = 1, · · · ,M , arrive at station i, i = 1, · · · , N , according to
independent Poisson processes with rate λij , for all i, j. If at the time of packet arrival the station
is being served (i.e., the station is being visited by a server = wavelength) then the packet is
instantaneously transmitted; else it enters a retrial loop (FDL). We assume the retrial time to be
random, because delay lines of various lengths may be used. If, at the time of retrial, the station
is not in service then the packet again goes into a retrial loop and this process continues.
The servers: The servers go through cycles of fixed length C (the frame time). In each cycle a
server visits each of its assigned stations once, for a fixed period of time Vi for station i. A visit
to i is preceded by a deterministic switchover (setup) time Si of the server. During Vi, there may
be two types of arrivals: (i) newly arriving packets, and (ii) packets which were in a retrial loop;
we assume the latter retry during Vi with some probability pi(Vi). In view of the huge available
bandwidth, we assume the server serves all these packets (new arrivals + retrials) instantaneously,
i.e., whenever a station is being served, any packet which arrives at it or retries, is transmitted
immediately. Hence for practical purposes the service times are negligible (see Section 4 for a
relaxation of the latter assumption). In this section, unlike the previous section, we assume that
buffers are infinite. However, to take into account that in reality packets may get lost, we assume
the following. At the end of each visit of station i each packet which still resides in a retrial loop
of i is dropped with probability qi(Vi). Hence the probability that a packet in a retrial loop of
station i leaves the system, either served during a visit at station i or dropped after a visit of
station i, is ri(Vi) := pi(Vi) + qi(Vi)− pi(Vi)qi(Vi).
Revenue: Every served packet generates a profit and every dropped packet incurs a loss to the
system. Our goal is to assign stations to servers, and subsequently visit times within a frame time
C to stations, such that the revenue of the system is maximized. Assume that:

– a packet of type j served at station i gives a profit γij (depending both on the type of packet
and the type of source).

– a packet of type j dropped at station i causes a penalty θij . Indeed, the server has an obligation
to meet the contract it has with each source. If the server fails to meet this contract it incurs
a penalty: loss of packets/reputation/further contracts. One could also view Θi :=

∑
j λijθij

as contract costs of the service provider per time unit, and Γi :=
∑
j λij(γij + θij) as the

maximum revenue that can subsequently be earned back by successfully serving packets.

For K = 1 wavelength (cf. also [1] where that case was studied), the mean earnings per cycle
are ∑

j

λijγij

[
(C − Vi)

pi(Vi)

ri(Vi)
+ Vi

]
,

and the mean costs per cycle are∑
j

λijθij

[
(C − Vi)(1−

pi(Vi)

ri(Vi)
)

]
,

yielding the following net revenue for station i per cycle:

Ri(Vi) =Mi(Vi)− CΘi,

where for all i = 1, . . . , N ,

Mi(Vi) := Γi

[
(C − Vi)

pi(Vi)

ri(Vi)
+ Vi

]
. (3.1)

8



Note that Γi is the maximum available revenue that can be gained from station i per time unit.
Since the server only serves a station during its visit period, all the arrivals during this period
are served and hence we have the term Γi ∗ Vi. But the packets which arrive during a non-visit
period of a station are eventually served with probability pi(Vi)

ri(Vi)
, and hence the revenue from this

period is given as Γi ∗ (C − Vi) ∗ pi(Vi)
ri(Vi)

. Further, Θi is the cost incurred per time unit by the
service provider to run the service. Choices of Γi and Θi can be varied depending upon the traffic
intensity, priorities, and available resources. These help the service provider to run, expand and
sell its services. More details regarding these terms depend on the type of networks and nodes
used, which is outside the scope of this paper. Finally, in [1] it was explained that since Θi is the
fixed cost incurred irrespective of how the resource is distributed, the maximization of

∑
iMi(Vi)

subject to conditions on Vi is enough to maximize the revenue
∑
iRi(Vi) of the system subject to

conditions on Vi.
Even if there are no explicit profits and costs attached to packet transmissions, the concept

of using a revenue function for performance analysis of an optical switching node may provide us
with various useful insights. Firstly, the revenue function acts as a substitute for the normalized
throughput of the system. Hence it provides system owners a methodology for allocating optimal
bandwidths to the various subscribers, and thus for optimizing their service (w.r.t. throughput).
Secondly, the concept of the reward function helps the system to prioritize subscribers; those with
higher priorities (higher time sensitivities) receive a higher reward and thus are assigned more
bandwidth. Finally, the penalty function for the dropped packets forces the system to provide
service even to the lowest priority packets, thereby maintaining the fairness of the system.

In the next subsection we present an algorithm to allocate the stations to different wavelengths
such that each wavelength has a set of stations to serve; subsequently the visit periods are chosen
such that the revenue for each wavelength is maximized.

3.2 Resource allocation

In this subsection we propose a procedure for solving the revenue maximization problem that was
globally described in Subsection 3.1. For each wavelength k, we have C =

∑
i∈Pk

(Si + Vi) where
Pk represents the set of all stations served by wavelength k. Note that if there is only one station
being served by a wavelength, then there is no switchover involved. In that case, Vi = C where
i is the only element of Pk. Further we denote the set of stations which are each served by one
complete wavelength as P and the set of stations which are not served by any wavelength as Q.

We now define the optimization problem REVENUE which produces maximum revenue via
an optimal allocation of stations to wavelengths and visit periods to stations.
REVENUE

max
N∑
i=1

Mi(Vi)

subject to
N∑
i=1

[(Si + Vi)xik + Viyik] = C, ∀ k = 1, 2, · · · ,K,

K∑
k=1

[xik + yik] ≤ 1, ∀ i = 1, 2, · · · , N,

N∑
i=1

xik +N

N∑
i=1

yik ≤ N, ∀ k,

xik, yik ∈ {0, 1} and 0 ≤ Vi ≤ C, ∀ i, k.

Here Mi(Vi) is given in Eq. (3.1). xik = 1 if station i is served by wavelength k, but station i
is not the only one being served by it, and is 0 otherwise, yik = 1 if station i is the only station
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being served by wavelength k, and is 0 otherwise. This is captured in the third condition: if for a
wavelength k some yik = 1 then no other station can be served on it. The second condition states
that each station i can only be served by at most one wavelength. The first and last conditions
are system properties, and they state that the allocation per wavelength should be equal to its
capacity C and the visit period cannot be negative or more than C. This problem is a non-linear
mixed integer programming problem. Under certain realistic assumptions regarding the system
parameters (see also [1]), we can reduce the objective function of this maximization problem to
separable concave terms; however, the occurrence of the integers xik, yik prevents us from using the
RANK algorithm [6] that was used in [1]. The so-called BALANCE problem, which is NP-complete
[5], is a special case of REVENUE; hence REVENUE is an NP-hard problem.

Below we propose a heuristic to solve REVENUE. We argue that this heuristic should produce
results which are close to optimal, and we provide numerical results in Section 3.3 to support that
claim.

The idea behind our approach is the following. In Step 1 we act as if there is only one wave-
length, but a frame time of length KC instead of C. We use the RANK algorithm to get an
optimal choice of the visit periods Ṽi for such a situation. That should already give a quite good
first estimate of the visit periods. In Step 2 we use those Ṽi values to assign stations to wavelengths.
This is done such that each of the K wavelengths gets roughly the same

∑
(Si+ Ṽi) – which hence

should be close to C. Finally, in Step 3, with those K allocations we use RANK again, but now
for K separate single-wavelength problems. Below we provide the details of these three steps.

Step 1 We first define the following optimization problem.

ONE

max
∑
i

Mi(Ṽi)

subject to
∑
i

Ṽi = KC −
∑
i

Si,

and 0 ≤ Ṽi ≤ C − Si, ∀i.

The solution of this optimization problem gives us the values of Ṽi required by each station
to give the maximum revenue, subject to the condition that the maximum amount of resource
available is KC. The upper bound on Ṽi is included because a station cannot be served by more
than one wavelength. Note that Mi(Ṽi) is the same as given in Eq. (3.1).

We solve the (separable, concave) optimization problem ONE using RANK, and we thus obtain
values of Ṽi. Every station i which has Si + Ṽi = C, is allocated to a single wavelength. These
stations belong to the set P and as described at the start of this section, all stations belonging
to this set have their visit periods equal to C. Further, all the stations with Ṽi = 0 belong to the
set Q. These stations will not be allocated to any wavelength, and as mentioned earlier they will
have zero visit period. By renumbering, we may assume that the stations in Q are the highest
numbered stations, immediately preceded by the stations in P. Also assume that the latter N(P)
stations (where N(P) denotes the number of elements in P) are assigned to the N(P) highest
numbered wavelengths.

We now turn to our procedure for assigning stations to wavelengths (Step 2) and subsequently
determining the exact visit periods (Step 3).

Step 2 Take the values of Si+ Ṽi for the first N −N(P+Q) stations (i.e., those not in P or Q).
Sort these values in descending order, say S1 + Ṽ1 ≥ S2 + Ṽ2 ≥ · · · ≥ SN−N(P+Q) + ṼN−N(P+Q).
Then allocate those stations to the first K − N(P) wavelengths following the so-called Longest
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Processing Time first (LPT) rule. This amounts to first assigning stations 1, . . . ,K − N(P) to
wavelengths 1, . . . ,K −N(P); and subsequently assigning each of the remaining stations, one by
one in descending order of their values, to that wavelength for which the sum of the already as-
signed values is the smallest. This procedure is continued until all stations have been assigned.

Remark. The idea to use LPT comes from multiprocessor scheduling. Consider a set of N
tasks which have to be served on K parallel servers. The service of a task on a server, once started,
cannot be interrupted. In multiprocessor scheduling the goal often is to minimize the makespan,
i.e., the time until all tasks are completed. This is an NP-hard problem. The makespan minimiza-
tion problem can be reformulated in the terminology of bin-packing, where it amounts to finding
the smallest common capacity of the bins, sufficient to pack all N pieces. Many heuristics have
been developed for solving the bin-packing or makespan minimization problem; see, e.g., [4]. LPT
is a simple and accurate heuristic procedure. It is intuitively clear that assigning tasks in decreas-
ing order of size should work well when K and N are not too small: because the smallest tasks
are assigned last, it is likely that all makespans are close to each other. See [9] for a probabilistic
analysis of various bin-packing heuristics, and [3] for a probabilistic analysis of LPT list scheduling.

Step 3 Now that we have assigned all stations to a wavelength, we still need to determine the
visit periods for those stations that use wavelengths 1, . . . ,K −N(P), because the extended visit
periods Si+ Ṽi of the stations that are assigned to a particular wavelength do not exactly sum up
to C. For this we solve optimization problem TWO, for k = 1, . . . ,K −N(P):

TWO

max
∑
i∈Pk

Mi(Vi)

subject to
∑
i∈Pk

Vi = C −
∑
i∈Pk

Si,

and Vi ≥ 0, ∀i ∈ Pk.

The solution of this optimization problem gives us the values of Vi required by each station
allocated to wavelength k, subject to the maximum amount of resource available at that wave-
length. We thus obtain new extended visit periods Si + Vi for stations 1, . . . , N −N(P+Q).

Remark. If, in Step 2, a station i∗ is the only one being assigned to a wavelength, then we do
not run TWO for it but take Vi∗ = C.

This concludes the description of the heuristic procedure. In the next section we shall investigate
its accuracy. Its computational complexity is low. The optimization problems ONE and TWO are
concave separable with linear constraints and can be solved in polynomial time; and we use ONE
once, TWO at most K times. We also use LPT once. Further, we need to sort the extended visit
periods in Step 2 once.

3.3 Numerical examples

In this subsection we present a few numerical examples to illustrate various properties of our
system. For all the examples in this section we assume that the probability of retrial and drop
probability for a station i are given by pi(Vi) = 1 − e−νiVi (corresponding to exponentially dis-
tributed retrial times) and qi(Vi) = e−µiVi . Further, the revenue of a station i is equal to Mi(Vi)
as given in Eq. (3.1). It should be noticed that these pi(·) and qi(·) are, respectively, increasing
concave and decreasing convex functions, while ri(·) are increasing. Problem ONE featuring in
Step 1 now is a separable concave optimization problem.
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Example 1: We first consider a toy example with K = 2 wavelengths and either N = 3 or N = 4
stations, for which all possible assignments allocating all stations to a wavelength are listed. For
each station i, the parameters νi and µi are equal to 0.5. The switchover times Si = 0.2 for each
station i and frame time C = 2. Finally, Γi = i, for each station i. The allocation of stations
to different wavelengths is shown, along with the corresponding visit period (obtained by using
TWO) and the revenue obtained by the system. Note that an allocation 0 implies that the station
was not allocated to any wavelength.

Table 4: 3 station system
Allocation Visit Period Revenue
[1 1 2] [0.48 1.12 2.00] 10.11
[1 2 1] [0.28 2.00 1.32] 9.81
[2 1 1] [2.00 0.61 0.99] 8.65

Table 5: 4 station system
Allocation Visit Period Revenue
[0 1 1 2] [0.00 0.61 0.99 2.00] 14.65
[1 2 2 1] [0.14 0.61 0.99 1.46] 14.25
[1 2 1 2] [0.28 0.48 1.32 1.12] 14.03
[1 1 2 2] [0.48 1.12 0.67 0.93] 13.34
[1 1 1 2] [0.00 0.61 0.99 2.00] 14.65
[1 1 2 1] [0.00 0.48 2.00 1.12] 14.22
[1 2 1 1] [0.00 2.00 0.67 0.93] 13.23
[2 1 1 1] [2.00 0.00 0.67 0.93] 11.23

In Tables 4 and 5 the values given by our procedure described in the previous section are
printed boldface. We observe that in both cases our procedure gives the best allocation. In Table
4, the allocation [1 1 2] indicates that stations 1 and 2 are assigned to wavelength 1 and station 3
to wavelength 2. The [0.48 1.12 2.00] in this table implies that a frame for wavelength 1 consists
of a visit period 0.48 for station 1, followed by an 0.2 switchover time, an 1.12 visit period for
station 2 and an 0.2 switchover time, while a frame for wavelength 2 is fully occupied by a 2.00
visit period of station 3.

Example 2: In this example we compare the results obtained using our procedure with the
results obtained by randomly allocating wavelengths to different stations and then optimizing the
visit periods at each wavelength. We show numerical results for five different cases for a system
with N = 16 stations, K = 4 wavelengths and frame time C = 8. In each of the first four cases,
we vary one parameter while keeping all the other constant and in the last case we use random
system parameters; the Γi are uniformly distributed on (0, 8); the νi and µi on (0, 1), and the Si
on (0, 0.4).

We take 10000 independent allocations of wavelengths in two different ways, (i) and (ii). In (i)
we allocate stations in such a way that each wavelength gets at most 4 stations, whereas in (ii) there
is no restriction on the number of stations allocated to a wavelength. In both cases we subsequently
use TWO. For both (i) and (ii) we show the maximum, the average and the minimum obtained
revenue among the 10000 cases and the percentage of allocations which generated a revenue above
the value generated using our algorithm.

Tables 6-10 suggest that a random assignment of stations to wavelengths, but still using TWO
to subsequently choose Vi, is much worse than the assignment of our algorithm. However, the
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Table 6: Varying Γi
Maximum Average Minimum Percent

(i) 475.72 468.89 454.24 1.46
(ii) 475.50 441.36 300.33 0.24

Algorithm 474.51

Γi = 0.5 ∗ i, νi = 0.5, µi = 0.5 and S = 0.2.

Table 7: Varying νi
Maximum Average Minimum Percent

(i) 387.29 384.58 381.94 9.89
(ii) 387.14 358.36 224.93 0.87

Algorithm 385.65

Γi = 4, νi = 0.05 ∗ i, µi = 0.5 and S = 0.2.

Table 8: Varying µi
Maximum Average Minimum Percent

(i) 413.19 413.15 412.98 0.00
(ii) 413.19 377.54 231.52 0.00

Algorithm 413.19

Γi = 4, νi = 0.5, µi = 0.05 ∗ i and S = 0.2.

Table 9: Varying Si
Maximum Average Minimum Percent

(i) 398.81 398.06 395.60 0.05
(ii) 398.79 351.53 181.94 0.00

Algorithm 398.81

Γi = 4, νi = 0.5, µi = 0.5 and S = 0.05 ∗ i.

Table 10: Completely Random
Maximum Average Minimum Percent

(i) 360.85 355.23 338.07 4.56
(ii) 360.83 338.14 231.45 0.62

Algorithm 359.93

Γi ∼ U(0, 8), νi ∼ U(0, 1), µi ∼ U(0, 1), and Si ∼ U(0, 0.4)

symmetric assignment, in which each of the four wavelengths serves (at most) four out of the 16
stations, and for which the visit times are calculated using TWO, yields results that are typically
quite close to the values obtained using our algorithm (and in a few cases even better).

Example 3: In this example we study which effect increasing the numberK of wavelengths has on
the revenue of the system. We take the allocation obtained using the procedure of Subsection 3.2.
For each K we take N = 16 stations, Si = µi = νi = 0.05 ∗ i, Γi = 0.5 ∗ i and C = 8.

We observe that increasing the number of wavelengths increases the revenue obtained and also
the number of stations served. However, the marginal increment decreases with an addition of each
wavelength. In this example the change fromK = 1 toK = 2 almost doubles the revenue and more
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Table 11: Varying the number of wavelengths
K Revenue # of stations served
1 170.54 3
2 322.62 8
3 400.97 11
4 452.88 13
5 480.40 14
6 499.60 14
7 517.23 15
8 525.21 15
16 544.00 16

than doubles the number of stations served, whereas the change from K = 7 to K = 8 increases
the revenue by less than two percent (and the number of stations served does not change). In
the case of K = 16, the revenue equals C ∗

∑16
i=1 Γi = 544. The system operator can choose an

optimal number of wavelengths so as to maximize its utility. This observation may be of interest
in networks where traffic is highly variable and the cost of running extra resources is high.

Example 4: In this example we consider a system with N = 16 stations, K = 4 wavelengths,
frame time C = 8 and switchover period from each station Si = 0.2, for all i = 1, . . . , N . We show
three different cases, each of which has one of Γi, νi, and µi different for all stations, the other
two parameters being equal for all stations. In these numerical experiments we study how the
procedure described in Subsection 3.2 allocates resources depending on each factor, and develop
insight into the influence of these factors on the system performance. In Table 12, we mention the
wavelength to which each station is assigned, the visit period each station receives and the revenue
each station gives, for the three cases.

Table 12: Γi = 0.5 ∗ i, νi = 0.5 and µi = 0.5
Station Allocation Visit Revenue

1 0 0.00 0.00
2 0 0.00 0.00
3 3 0.93 6.54
4 4 1.22 10.68
5 4 1.45 14.89
6 3 1.67 19.27
7 2 2.16 24.96
8 1 2.25 28.90
9 1 2.34 32.89
10 2 2.46 37.00
11 3 2.20 39.45
12 4 2.23 43.23
13 4 2.30 47.24
14 3 2.40 51.49
15 2 2.78 57.03
16 1 2.81 60.94

Total 29.20 474.51

From Table 12 we see that in general Γi > Γj does not imply Vi > Vj , but when i and j are
allocated to the same wavelength this implication appears to be true. Also, if the value of Γi is
very low, then – even though our procedure allocates that station to a wavelength – it may not
receive any service (equivalent to not being allocated).
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Table 13: Γi = 4, νi = 0.05 ∗ i and µi = 0.5
Station Allocation Visit Revenue

1 0 0.00 0.00
2 1 3.35 26.05
3 2 2.33 22.33
4 3 2.18 23.09
5 4 2.07 23.83
6 4 1.97 24.37
7 3 1.88 24.80
8 2 1.83 25.30
9 1 2.16 28.02
10 4 1.69 25.85
11 3 1.64 26.09
12 2 1.60 26.42
13 1 1.89 28.59
14 3 1.50 26.76
15 4 1.47 26.96
16 2 1.44 27.19

Total 29.00 385.65

In Table 13 we see that in general, within a wavelength, stations with lower νi receive higher
Vi. This happens because the system tries to allocate longer visit periods to stations with low
retrial rates so as to maximize the number of packets it can serve. However, if νi is very low (see
station 1), then the system, subject to limited resources, might not allocate any resource to that
station.

Table 14: Γi = 4, νi = 0.5 and µi = 0.05 ∗ i
Stations Allocation Visit Revenue

1 3 1.85 22.76
2 4 1.86 23.36
3 2 1.87 23.94
4 1 1.87 24.48
5 3 1.86 24.90
6 4 1.85 25.29
7 2 1.84 25.66
8 1 1.83 26.01
9 1 1.82 26.32
10 3 1.80 26.56
11 2 1.78 26.81
12 4 1.76 27.03
13 4 1.73 27.23
14 2 1.71 27.43
15 3 1.69 27.62
16 1 1.68 27.79

Total 28.80 413.19

From Table 14 one can generally observe that the stations with higher drop probability, i.e.,
lower µi, receive longer visit periods to have fewer losses. Also, like in the previous case the
difference in revenue generated from each station is not big.

Three final observations: 1. The spread in visit periods is small in Table 14 compared to those
in Tables 12 and 13. This suggests that the factor µi is less important than the factors νi and
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Γi in the solution of this problem. 2. Our procedure often results in a more or less even spread
of revenues among stations if Γi are equal. This suggests that the procedure makes the system
reasonably fair, i.e., tries to provide the best service to each station. 3. Even though the revenues
obtained from stations with different retrial rates and drop probabilities are similar, the resources
required by these stations are different. For a lower retrial rate and/or higher drop probability,
a longer visit period is required to give similar revenue. This is a techno-economic trade-off to
consider while designing the router.

3.4 Multiple wavelengths – a variant

So far in this section we assumed that each station can be allocated to at most one wavelength.
We now briefly discuss a variant in which stations can be allocated to two adjacent wavelengths.
This is technically possible and offers additional flexibility, but at the expense of requiring some
additional switchover times. We mention two options for studying this trade-off. A very simple
approach would be the following. After optimal visit periods Ṽi are determined for the case of a
frame time of length KC in Step 1 of the heuristic procedure, just divide these visit periods over
the K different wavelengths by cutting the frame of length KC into K pieces each of length C. In
that way, some stations are allocated to two adjacent wavelengths because they are in one of the
cuts. In this approach, we do not have to go through Steps 2 and 3 of the procedure. However,
a disadvantage of allocating a station, say station i, to two different wavelengths is that on both
wavelengths also a switchover time has to be scheduled (and as a consequence some visit periods
have to be shortened and some revenue is lost). Hence one preferably only allocates station i to
two wavelengths if the corresponding switchover time Si is small. This brings us to the following,
somewhat more refined, heuristic.

For ` = 0, 1, ...,K − 1 select the set of stations J` with the ` smallest switchover times Si. The
stations in J` are the stations that will be allocated to two neighbouring wavelengths. For ` = 0, the
set J` is empty and we assign stations to wavelengths and visit periods to stations according to the
three-step approach sketched in Subsection 3.2. For ` > 0, we adapt the three-step approach in the
following way. In Step 1 we apply ONE with modified constraint

∑
i Ṽi = KC−

∑
i Si−

∑
i∈J` Si.

In Step 2, we then consider a K-machine scheduling problem with jobs of length 2Si + Ṽi, for
i ∈ J`, and jobs of length Si + Ṽi, for i 6∈ J`. Modify the first set of jobs by sorting the jobs from
large to small and cutting each job in two halves, of lengths Si + 1

2 Ṽi. Assign these 2 ∗ ` half jobs
over the K machines, by putting the j-th half job on machine j, for j < K, and by putting half
jobs j = K, . . . , 2` on machine 2K − j, respectively. Remark that in this way two corresponding
half jobs are scheduled on neighbouring machines (as wanted) and furthermore for large `, when
many machines will get two half jobs, these machines either get one large and one small half job
or two middle-sized half jobs. After that we assign the remaining jobs of length Si+ Ṽi, for i 6∈ J`,
to the different machines according to the LPT rule. In Step 3 we adapt the sizes of the jobs (i.e.
the visit periods of the stations) in order to achieve that each machine obtains a total amount of
work equal to C. This can be done by either shifting part of the work of half jobs on a machine
to the corresponding half jobs on neighbouring machines or alternatively by solving TWO again
for each of the machines separately. In this way we get different heuristic solutions for different
choices of `, and at the end we choose the ` and the corresponding solution for which the revenue
is maximal.

4 Nonnegligible service times

So far, we have assumed that service times are negligibly small, arguing (cf. the end of Section 1)
that this is quite realistic in most settings under consideration. In the present section we briefly
consider the case that we cannot assume that the service times are zero, sketching a possible
approach that basically allows one to follow the analysis in [1]. Apart from the nonzero service
times we also follow their setting, i.e., the buffers are infinite, and there is only one wavelength
available. Below we focus on one arbitrary queue i, again suppressing the subscript i. Assume that
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service times have a mean E[T ] > 0. Also assume that service times are typically considerably
shorter than V .

Let ζ denote the probability that a new arrival during a V period can immediately receive
service. We propose to approximate ζ by the fraction of time that there is no service in V . Assume
that, when a new arrival cannot immediately receive service, it is a candidate for a retrial. Assume
that such arrivals, as well as arrivals during a non-visit period, have a probability p(V )/r(V ) of
still being served. Then the counterpart of Mi(Vi) as studied in (3.1) is given by

M(V ) = γλ[ζV + (1− ζ)V p(V )

r(V )
+ (C − V )

p(V )

r(V )
]. (4.1)

Hence the mean total service time during one V period equals

λE(T )[ζV + (1− ζ)V p(V )

r(V )
+ (C − V )

p(V )

r(V )
], (4.2)

implying that ζ satisfies the following equation:

1− ζ = λE(T )[ζ + (1− ζ)p(V )

r(V )
+ (

C

V
− 1)

p(V )

r(V )
], (4.3)

so, with ρ := λE(T ):

ζ =
1− ρCV

p(V )
r(V )

1 + ρ− ρp(V )
r(V )

. (4.4)

Finally, we need to maximize
∑N
i=1Mi(Vi) under the usual constraints V1, . . . , VN ≥ 0 and∑N

i=1 Vi = C −
∑N
i=1 Si, with (now no longer suppressing subscripts)

Mi(Vi) = γiλiC
pi(Vi)

ri(Vi)
+ γiλiVi(1−

pi(Vi)

ri(Vi)
)

1− ρi CVi

pi(Vi)
ri(Vi)

1 + ρi − ρi pi(Vi)
ri(Vi)

. (4.5)

Mi(Vi) is not necessarily concave. Hence one cannot use RANK, and the numerical evaluation of
the maximization problem is more involved.

5 Conclusions and suggestions for further research

To understand the behaviour and study the performance of future optical networks, we have con-
sidered a few revenue optimization problems for single- and multiple-wavelength optical routing
nodes. The two main models under consideration were (i) a single-wavelength model in which we
focussed on the issue of finite buffers, and arrived at a separable concave optimization problem; and
(ii) a model in which we explored the advantages of having multiple wavelengths, and arrived at a
mixed integer non-linear programming problem. The latter problem is extremely time-consuming
to solve even for a small number of wavelengths. Since one would like to solve this revenue op-
timization problem quite frequently, we have developed an efficient and near-optimal heuristic
procedure for (i) assigning stations to wavelengths and subsequently (ii) assigning visit times to
stations within a fixed frame time.

Several topics for further research suggest themselves. Firstly, one might make adaptations to
the proposed heuristic procedure for the multiple-wavelength model. For example, the extended
visit periods Si+ Ṽi from Step 2 in Subsection 3.2, of the stations that are assigned to a particular
wavelength, do not exactly sum up to C; we therefore used TWO in Step 3 to make final choices
for the visit periods Vi. Instead, one could simply scale all Vi, that belong to one and the same
wavelength, by the same factor α such that

∑
(Si + αVi) = C. Also the approach sketched in

Subsection 3.4 could be explored further. Secondly, one might work out the approach sketched
in Section 4 to handle the case that service times are not negligibly small. Finally, it would be
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worthwhile to study the trade-off between investing in a higher number of fiber delay lines – which
should result in a lower drop probability – and using more wavelengths.
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